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cDepartamento de F́ısica Teórica C-XI and Instituto de F́ısica Teórica C-XVI
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Abstract: Starting from the QCD Schrödinger functional (SF), we define a family of

renormalization schemes for two four-quark operators, which are, in the chiral limit, pro-

tected against mixing with other operators. With the appropriate flavour assignments

these operators can be interpreted as part of either the ∆F = 1 or ∆F = 2 effective weak

Hamiltonians. In view of lattice QCD with Wilson-type quarks, we focus on the parity

odd components of the operators, since these are multiplicatively renormalized both on the

lattice and in continuum schemes. We consider 9 different SF schemes and relate them to

commonly used continuum schemes at one-loop order of perturbation theory. In this way

the two-loop anomalous dimensions in the SF schemes can be inferred. As a by-product

of our calculation we also obtain the one-loop cutoff effects in the step-scaling functions

of the respective renormalization constants, for both O(a) improved and unimproved Wil-

son quarks. Our results will be needed in a separate study of the non-perturbative scale

evolution of these operators.
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1. Introduction

In the Standard Model, four-quark operators typically arise as effective interaction ver-

tices when integrating out the large scale physics associated with the weak interactions.

Examples are the ∆B = 2 operators

O∆B=2 =
(

b̄γµ(1 − γ5)d
)2

, (1.1)

which mediate B0–B̄0 mixing or their analogues in the case of kaons. Hence, the quanti-

ties of interest are matrix elements of four-quark operators between hadronic states, which

are inherently non-perturbative in nature. On the other hand, the four-quark operators

are originally obtained in perturbation theory and renormalized at a large scale, using

e.g. the minimal scheme (MS) of dimensional regularization. If lattice QCD is used for the

calculation of the hadronic matrix elements, the matching to the perturbative renormal-

ization schemes poses a problem, since the scale differences involved are potentially large.

A general strategy to solve this problem has been proposed some time ago [1]: its starting

point is the definition of an intermediate scheme, where the finite space-time volume is

used to set the renormalization scale. Finite-size-scaling techniques then allow to step up

the energy scale recursively until the perturbative regime is reached, where the continuum

schemes can be safely matched in perturbation theory. Previous applications include the

running coupling [2] and quark mass [3 – 5], moments of structure functions [6]–[9], and the

static-light axial current [10, 11].
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This paper is part of a project to apply this strategy to two particularly important four-

quark operators with phenomenological applications to B0–B̄0 or K0–K̄0 mixing and non-

leptonic kaon decays [12]–[15]. We use the QCD Schrödinger functional to define a family of

finite volume renormalization schemes, and report our results for the perturbative matching

to more commonly used renormalization schemes. The matching procedure is done in

two steps: first the Schrödinger functional is regularized on the lattice with Wilson-type

quarks, and the renormalized operators are related to the standard lattice scheme, defined

by minimal subtraction of logarithms. Then, using results from the literature, this lattice

scheme can be related to a continuum scheme, such as dimensional reduction (DRED)

or one of the minimal subtraction schemes (MS) in dimensional regularization. Since the

two-loop anomalous dimensions are known in these schemes, the one-loop matching then

allows the two-loop anomalous dimensions to be inferred in the SF schemes, too.

The paper is organized as follows: in section 2 we start with the definition of the

operators and their correlation functions in the Schrödinger functional, which are then used

to formulate the renormalization conditions. After a short review of perturbative matching

equations between different renormalization schemes (section 3), we collect the equations

for the reference schemes (section 4) and report the results of our one-loop computation

(section 5). In view of the corresponding non-perturbative computation with Wilson-

type quarks, we then discuss perturbative lattice artefacts in the step-scaling functions

(section 6) and present our conclusions.

2. Definitions and setup

The four-quark operators we would like to renormalize are of the form

O±
LL =

1

2

[

(ψ̄1γµ(1 − γ5)ψ2)(ψ̄3γµ(1 − γ5)ψ4) ± (ψ̄1γµ(1 − γ5)ψ4)(ψ̄3γµ(1 − γ5)ψ2)
]

, (2.1)

where the subscript LL refers to the Dirac structure of two left-handed currents, and it is

understood that colour indices are contracted within the quark bilinears in round brackets.

In order to make contact with phenomenological applications, one just needs to assign the

physical quark flavours. For instance, with the identifications

ψ1 = ψ3 = s, ψ2 = ψ4 = d, (2.2)

the operator O−
LL vanishes while the matrix elements of O+

LL appear in the K0–K̄0 mix-

ing amplitude. Replacing strange by bottom quarks, the same operator mediates B0–B̄0

mixing. If instead one identifies

ψ1 = s, ψ2 = d, ψ3 = ψ4 = u, c, (2.3)

(anti-symmetrised under the flavour exchange transformation u ↔ c) one obtains the ∆S =

1 operators relevant to the ∆I = 1/2 rule in non-leptonic kaon decays, in a framework where

the charm quark remains an active degree of freedom.

The operators (2.1) can be decomposed in parity-even and -odd components:

O±
LL ≡ O±

(V−A)(V−A) = O±
VV+AA − O±

VA+AV, (2.4)
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where V,A refer to the Dirac structure of vector and axial vector currents, respectively. In

the following we will work with the parity-odd component of the operators,

O±
VA+AV =

1

2

[

(ψ̄1γµψ2)(ψ̄3γµγ5ψ4) + (ψ̄1γµγ5ψ2)(ψ̄3γµψ4) ± (ψ2 ↔ ψ4)
]

, (2.5)

rather than staying with the product of two left-handed currents (2.1) as induced by the

Standard Model weak interactions. Note that in regularizations that preserve chiral sym-

metry, parity-even and parity-odd components are related by chiral symmetry and are

thus renormalized in the same way. However, the situation changes in lattice regulariza-

tions with Wilson-type quarks: while the parity-odd operators O±
VA+AV are multiplicatively

renormalizable [16], their parity-even partners O±
VV+AA share the lattice symmetries with

four other four-quark operators, which leads to a complicated operator mixing problem.

Although this problem can be solved non-perturbatively [17], it is a source of additional

uncertainties and systematic errors. In this paper this problem is circumvented by im-

posing renormalization conditions on the parity-odd operator components. Besides its

technical advantage this strategy makes sense also from a practical point of view: as has

been demonstrated in [18], the introduction of non-standard chirally twisted mass terms

(“twisted mass QCD”) redefines the physical parity symmetry so that the parity-odd op-

erator components can play the rôle of operators with either physical parity. 1 As a result,

the hadronic matrix elements of operators with even physical parity can be obtained from

correlation functions which only involve the lattice operators (2.5). We conclude that our

choice to renormalize these parity-odd operator components is irrelevant for chirally sym-

metric regularizations, but it is advantageous with Wilson-type quarks and does not imply

any prejudice on possible phenomenological applications.

2.1 Renormalization conditions

We now choose the lattice regularization with Wilson quarks, possibly O(a) improved by

the Sheikholeslami–Wohlert term in the action [20]. For unexplained notation we refer

the reader to ref. [21]. We assume that the bare operators (2.5) are defined locally on

the lattice, i.e. all quark and antiquark fields are taken at the same space-time point. To

formulate renormalization conditions for the renormalized operators

(OR)±VA+AV = Z±
VA+AVO±

VA+AV, (2.6)

we use the standard set-up of the Schrödinger functional [25, 26] as described in [21]. We

consider generic source fields made up of boundary quarks and antiquarks,

O12[Γ] = a6
∑

y,z

ζ̄1(y)Γζ2(z), (2.7)

O′
12[Γ] = a6

∑

y,z

ζ̄ ′
1(y)Γζ ′

2(z), (2.8)

where Γ is a Dirac matrix that must anticommute with γ0 as otherwise the source field

vanishes. This is due to the projectors P± = 1
2(1± γ0), which are implicit in the boundary

1For an alternative solution using axial Ward identities, see [19].
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quark and antiquark fields,

ζ(x) = P−ζ(x), ζ̄(x) = ζ̄(x)P+, (2.9)

and similarly for the primed fields. The presence of the projectors limits the possible Dirac

structures for the quark bilinears at the time boundaries. For instance, it is not possi-

ble to define scalar quark bilinear sources, unless one introduces a non-vanishing angular

momentum. However, finite momenta typically increase the lattice artefacts, and lead to

poor signal-to-noise ratios in numerical simulations, so that we are not going to pursue this

further.

The renormalization conditions will be imposed in the massless theory, so that the

renormalization constants and the renormalized coupling are quark mass independent by

construction. In the absence of chirally twisted mass terms, standard parity is an exact

symmetry of the lattice-regularized Schrödinger functional. In order to renormalize the

parity-odd operators (2.5) we thus need a total source with negative parity which contains

at least 2 quark bilinear sources. Because of the above mentioned problem with the pro-

jectors at the time boundaries, we decided to introduce a fifth “spectator quark” and use

correlation functions of the generic form:

F±[ΓA,ΓB ,ΓC ](x0) = L−3
〈

O21[ΓA]O±
VA+AV(x)O45[ΓB ]O′

53[ΓC ]
〉

. (2.10)

The corresponding Feynman diagram is given in the left of figure 1, where the quark lines

correspond to the boundary-to-volume quark propagators H(x),H ′(x) of refs. [22, 23], and

to the boundary-to-boundary propagator K of ref. [24], which contains an explicit time-like

link variable from Euclidean time T − a to T .

We then consider the 5 specific cases

F±
1 (x0) = F±[γ5, γ5, γ5](x0), (2.11)

F±
2 (x0) =

1

6

3
∑

i,j,k=1

εijkF
±[γi, γj , γk](x0), (2.12)

F±
3 (x0) =

1

3

3
∑

k=1

F±[γ5, γk, γk](x0), (2.13)

F±
4 (x0) =

1

3

3
∑

k=1

F±[γk, γ5, γk](x0), (2.14)

F±
5 (x0) =

1

3

3
∑

k=1

F±[γk, γk, γ5](x0). (2.15)

These correlation functions describe transitions between parity-even and -odd states at the

Euclidean time boundaries, mediated by the parity-odd four-quark operators. In particular,

parity-even scalar or axial vector states are produced at the lower time boundary by taking

appropriate combinations of pseudoscalar and vector states.
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Figure 1: The Feynman diagrams for the four-quark correlation functions F±
s

(x0) and the

boundary-to-boundary correlators f1, k1 at tree level. Euclidean time goes from left to right. The

double blob indicates the four-quark operator insertion and the dashed links indicate the explicit

time-like link variable in the boundary-to-boundary quark propagators.

In order to obtain renormalization conditions for the four-quark operators based on

these correlation functions, we first have to take care of the source field renormalization. As

the boundary quark and antiquark fields are all renormalized multiplicatively by the same

renormalization constant [27], this can easily be achieved by forming appropriate ratios of

correlation functions. More precisely, with the boundary-to-boundary correlators

f1 = − 1

2L6

〈

O12[γ5]O′
21[γ5]

〉

, (2.16)

k1 = − 1

6L6

3
∑

k=1

〈

O12[γk]O′
21[γk]

〉

, (2.17)

we consider the following 9 ratios of correlation functions

h±
i (x0) =

F±
i (x0)

f
3/2
1

, i = 1, . . . , 5 (2.18)

h±
6 (x0) =

F±
2 (x0)

k
3/2
1

, (2.19)

h±
i+4(x0) =

F±
i (x0)

f
1/2
1 k1

, i = 3, 4, 5. (2.20)

In these ratios the renormalization of the boundary fields cancels out, i.e. the renormalized

ratios are obtained by multiplying with the appropriate four-quark operator renormaliza-

tion constant. A renormalization condition is now obtained by choosing one of the ratios

(2.20), setting the renormalized quark mass to zero, and specifying T/L, x0/L and the an-

gle θ of the spatial boundary conditions [21]. All parameters are then fixed, and L remains

the only scale in the system. Then one requires

Z±
VA+AV;s(g0, aµ)h±

s (x0) = h±
s (x0)|g0=0, (2.21)

where the RHS is the free field theory result. The renormalization constant Z±
VA+AV;s is thus

obtained at the renormalization scale µ = 1/L, and depends implicitly on all the parameter

choices made. In practice, we followed refs. [3, 4] and always set T = L, x0 = L/2 and

θ = 0.5. This leaves us with 9 different SF schemes labelled by s = 1, . . . , 9 in eq. (2.21).

While there are good arguments for choosing T = L [3], there are in general no a priori
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criteria for a good parameter choice. This can only be judged a posteriori by comparing

non-perturbative and perturbative data, or by looking at the apparent convergence of

the perturbative expansion of the anomalous dimensions. As it will turn out, there is

considerable variation among our 9 choices of renormalization schemes.

3. Anomalous operator dimensions in perturbation theory

Operators and parameters are renormalized at the renormalization scale µ, which in the SF

schemes is identified with 1/L. A change of scale is then governed by the renormalization

group. Let us consider QCD with Nf mass degenerate quark flavours and N colours, and its

Euclidean correlation functions of gauge-invariant composite operators. Limiting ourselves

to multiplicatively renormalizable operators, any renormalized n-point functions of such

operators,

Gn(x1, . . . , xn) = 〈O1(x1) · · ·On(xn)〉 , (3.1)

satisfies the Callan–Symanzik equation

{

µ
∂

∂µ
+ β(g)

∂

∂g
+ τ(g)m

∂

∂m
−

n
∑

i=1

γOi
(g)

}

Gn = 0. (3.2)

The renormalization group functions β, τ and γ are the β-function for the coupling and

the anomalous dimensions for the quark mass and composite operators respectively. In

quark mass independent schemes the renormalization group functions only depend on the

renormalized coupling and have perturbative expansions of the form

β(g)
g→0∼ −g3

∞
∑

k=0

bkg
2k, (3.3)

τ(g)
g→0∼ −g2

∞
∑

k=0

dkg
2k, (3.4)

γ(g)
g→0∼ −g2

∞
∑

k=0

γkg
2k. (3.5)

The coefficients are scheme-dependent in general, except for b0, b1 and d0, γ0. In the nor-

malization adopted here we have (see refs. [28 – 30] for the coefficients up to k = 3 in the

MS scheme and for further references):

b0 =

{

11

3
N − 2

3
Nf

}

(4π)−2, (3.6)

d0 =
3(N2 − 1)

N
(4π)−2, (3.7)

b1 =

{

34

3
N2 −

(

13

3
N − N−1

)

Nf

}

(4π)−4. (3.8)

– 6 –
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Denoting the anomalous dimensions for the operators O±
VA+AV by γ±, their leading order

coefficients are given by [31, 32]

γ±
0 =

±6(N ∓ 1)

N
(4π)−2. (3.9)

The universality of these coefficients can easily be understood by changing to another quark

mass independent scheme. This amounts to finite renormalizations of the form

g′ = g
√

Xg(g), (3.10)

m′ = mXm(g), (3.11)

O′
R = ORXO(g). (3.12)

The n-point functions of the primed operators satisfy again a Callan–Symanzik equation

of the form (3.2), and the respective renormalization group functions are then related as

follows

β′(g′) =

{

β(g)
∂g′

∂g

}

g=g(g′)

, (3.13)

τ ′(g′) =

{

τ(g) + β(g)
∂

∂g
lnXm(g)

}

g=g(g′)

, (3.14)

γ′(g′) =

{

γ(g) + β(g)
∂

∂g
lnXO(g)

}

g=g(g′)

. (3.15)

Expanding the renormalization factors in perturbation theory,

X (g)
g→0∼ 1 +

∞
∑

k=1

X (k)g2k. (3.16)

one finds that b0, b1, and d0, γ0 remain indeed unchanged, and for the next-to-leading order

anomalous dimensions one arrives at

d′1 = d1 + 2b0X (1)
m − d0X (1)

g , (3.17)

γ′
1 = γ1 + 2b0X (1)

O − γ0X (1)
g . (3.18)

Hence, if γ1 is known from a two-loop calculation in some reference scheme, it can be

obtained in any other scheme by relating the schemes at one-loop order, thereby avoiding

a direct two-loop computation. The situation for any multiplicatively renormalizable op-

erator hence is the same as with the quark mass, where the two-loop anomalous dimension

in the SF scheme has been obtained along these lines [3].

4. Reference schemes

The two-loop anomalous dimensions γ±
1 have been computed for a variety of schemes [33]–

[36]. The first computation was performed by Altarelli and collaborators [33], using dimen-

sional reduction (DRED) [37]. This result was later confirmed by Buras and Weisz [34],

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
8
9

who used dimensional regularization with both the naive and the ’t Hooft–Veltman defini-

tion of γ5 in D dimensions [38]. In the DRED scheme, but with the renormalized coupling

defined in the MS scheme (this differs from the renormalized coupling used in [33]), the

two-loop anomalous dimension takes the form

γ±
1,DRED =

N ∓ 1

2N

{

22

3
N2 − 21 − 4

3
NNf ±

(

113

3
N +

57

N
− 20

3
Nf

)}

(4π)−4. (4.1)

For later reference we also quote the corresponding results in the NDR (“dimensional

regularization with naive γ5”) and HVDR (“dimensional regularization with ’t Hooft–

Veltman γ5”) schemes, as defined in [34]

γ±
1,NDR =

N ∓ 1

2N

{

−21 ±
(

57

N
− 19

3
N +

4

3
Nf

)}

(4π)−4, (4.2)

γ±
1,HVDR =

N ∓ 1

2N

{

88

3
N2 − 21 − 16

3
NNf ±

(

157

3
N +

57

N
− 28

3
Nf

)}

(4π)−4. (4.3)

In order to obtain the two-loop anomalous dimensions in the SF schemes, we need the

one-loop relations between the renormalized operators and coupling constants,

(

O±
VA+AV

)

SF
=

(

O±
VA+AV

)

DRED
X±

SF,DRED(ḡ), (4.4)

ḡ2
SF(L) = ḡ2(µ)Xg(ḡ). (4.5)

Here we have denoted the MS coupling by ḡ, and we assume that the SF coupling has

been defined for N = 3 colours as in [39, 40]. There, also the one-loop coefficient for the

matching of the couplings has been determined:

X (1)
g = 2b0 ln(µL) − 1

4π
(c1,0 + c1,1Nf) , (4.6)

c1,0 = 1.25563(4), (4.7)

c1,1 = 0.039863(2). (4.8)

The one-loop relation between the renormalized operators will be established in two steps,

by first converting to a lattice renormalization scheme (lat), which is obtained by minimally

subtracting the logarithms [41]. This yields the one-loop relation

(

O±
VA+AV

)

SF
=

(

O±
VA+AV

)

lat
X±

SF,lat(glat), (4.9)

which will be discussed in more detail in the next section. On the other hand, the relation

between the operators in the lat-scheme and DRED has been established in refs. [42 – 44].

Defining the finite renormalization factor through

(O±
VA+AV)DRED = (O±

VA+AV)latX±
DRED,lat(glat), (4.10)

the one-loop coefficient is given by

X±(1)
DRED,lat =

{

Nz1 ± z0 + N−1z−1

}

(4π)−2, (4.11)

– 8 –
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with coefficients

z1 =
1

2

(

∆γµ
+ ∆γµγ5

+ 2∆Σ1
+ 1

)

, (4.12)

z0 =
1

2

(

∆γµ
+ ∆γµγ5

− ∆1 − ∆γ5
− 1

)

, (4.13)

z−1 =
1

2
(∆1 + ∆γ5

) −
(

∆γµ
+ ∆γµγ5

+ ∆Σ1

)

. (4.14)

The ∆’s have been defined in [42, 43] and are related to the quark propagator and vertex

functions of quark bilinears. Though gauge parameter dependent in general, the above

linear combinations are gauge-independent, and a numerical evaluation yields [45, 43, 46],

[z1, z0, z−1] =

{

[−14.06090(9), 5.7854(1), 8.2755(2)] for csw = 1,

[−17.70704(7),−0.9331(1), 18.6402(2)] for csw = 0,
(4.15)

where to this order of perturbation theory csw ≡ c
(0)
sw = 0, 1 refers to standard and O(a)

improved Wilson quarks, respectively. With N = 3, we obtain

X+(1)
DRED,lat =

{

−0.213020(2) for csw = 1,

−0.302956(2) for csw = 0,
(4.16)

X−(1)
DRED,lat =

{

−0.286293(2) for csw = 1,

−0.291138(2) for csw = 0.
(4.17)

Finally, the desired one-loop relation between the SF schemes and the DRED scheme is

obtained by combining eqs. (4.9),(4.10), which to one-loop order implies

X±(1)
SF,DRED = X±(1)

SF,lat −X±(1)
DRED,lat. (4.18)

The two-loop anomalous dimensions are then related by formula (3.18), identifying the SF

and DRED schemes with the primed and unprimed schemes, respectively.

5. One-loop results

The perturbative expansion of the finite volume correlation functions is straightforward

albeit a bit tedious. The technique is well-documented so that we refer to refs. [22, 24] for

details concerning the gauge-fixing procedure and the parameter tuning necessary to take

the continuum limit while keeping the volume fixed in physical units. Here we just describe

the technical details pertaining to the application at hand. We generated double precision

data for the one-loop diagrams displayed in figures 2 and 3, for lattice sizes ranging from

L/a = 4 to 32, and we took steps of 2 in order to have a lattice coordinate for x0 = L/2.

We generated data for both the O(a) improved (csw = c
(0)
sw = 1) and unimproved Wilson

quarks (csw = 0). In the case of the O(a) improved action, we also included the effect

of the O(a) counterterm from the boundary proportional to the improvement coefficient

c̃t [21]. We did not attempt to improve the four-quark operators, as there are several

– 9 –
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Figure 2: Feynman diagrams of the self-energy type.

O(a) counterterms, which renders O(a) improvement impractical. We note, however, that

the local operators are O(a) improved at tree level. Two independent sets of data were

generated by two subsets of the authors, and perfect agreement up to rounding errors was

found. We also checked the independence of the gauge parameter, and compared with a

numerical simulation with gauge group SU(3) at large values of β = 6/g2
0 (e.g. β = 80).

As disconnected diagrams (with respect to the quark lines) start contributing at order

g4
0 , the numerical values for these diagrams set the scale for the expected accuracy of the

comparison.

Having passed these checks, we obtained the one-loop expressions for the renormaliza-

tion constants from the renormalization conditions (2.21). With the notation

Z±
VA+AV;s(g0, a/L) = 1 +

∞
∑

n=1

g2n
0 Z±

s (L/a)(n), (5.1)

F±
i (x0) =

∞
∑

n=0

g2n
0 F±

i (x0)
(n) (5.2)

(and analogously for f1, k1), we find

Z±
s (L/a)(1) = −

{

F±
i (L/2)(1)

F±
i (L/2)(0)

+
F±

i (L/2)
(1)
b

F±
i (L/2)(0)

+ m(1)
c

∂

∂m0
ln F±

i (L/2)(0)

}
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Figure 3: The remaining Feynman diagrams at one-loop order, which are not of the self-energy

type.

+
3

2
z

{

f
(1)
1

f
(0)
1

+
f

(1)
1b

f
(0)
1

+ m(1)
c

∂

∂m0
ln f

(0)
1

}

+
3

2
(1 − z)

{

k
(1)
1

k
(0)
1

+
k

(1)
1b

k
(0)
1

+ m(1)
c

∂

∂m0
ln k

(0)
1

}

. (5.3)

Here, the SF schemes s = 1 to s = 5 correspond to i = 1, . . . , 5 and z = 1, SF scheme

s = 6 translates to i = 2 and z = 0, and schemes s = 7 − 9 are obtained with i = 3, 4, 5

and z = 1/3. It is assumed that the one-loop expressions are evaluated at the bare mass

m0 = 0, i.e. the mass counterterms with (see e.g. [47])

am(1)
c =

{

−0.20255651209CF (csw = 1),

−0.32571411742CF (csw = 0),
CF =

N2 − 1

2N
, (5.4)

ensure the condition of vanishing renormalized quark mass to one-loop order. We have also

added the contribution of the boundary counterterm proportional to c̃t − 1, as indicated

by the subscript b. These terms only modify the O(a) cutoff effects and we set them to

zero in the case of unimproved Wilson quarks.
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SF scheme r+
0 (csw = 1) r+

0 (csw = 0) r−0 (csw = 1) r−0 (csw = 0)

1 −0.2444(2) −0.3346(6) −0.0635(2) −0.0683(5)

2 −0.2917(2) −0.3818(6) −0.1663(1) −0.1711(5)

3 −0.2360(2) −0.3262(5) −0.0551(1) −0.0599(5)

4 −0.3053(2) −0.3954(6) −0.1935(2) −0.1983(5)

5 −0.3004(1) −0.3905(6) −0.1754(1) −0.1801(4)

6 −0.3043(2) −0.3944(6) −0.1790(1) −0.1837(5)

7 −0.2444(2) −0.3346(6) −0.0635(2) −0.0683(6)

8 −0.3137(1) −0.4038(6) −0.2020(1) −0.2067(6)

9 −0.3088(2) −0.3989(6) −0.1838(2) −0.1885(5)

Table 1: The one-loop coefficients (5.5) of the renormalization constants for the 9 SF schemes, for

both improved and unimproved Wilson quarks.

In all cases it is expected that the one-loop coefficients Z±
s (L/a)(1) have an asymptotic

expansion in powers of the lattice spacing of the form

Z±
s (L/a)(1) '

∞
∑

ν=0

( a

L

)ν
{

r±ν + s±ν ln(L/a)
}

. (5.5)

Here we are mainly interested in the continuum limit, and thus the coefficients for ν = 0.

One expects s±0 to be equal to the universal one-loop anomalous dimension, s±0 = γ±
0 ,

and r±0 is the finite part of the one-loop renormalization constant which determines the

one-loop matching between the SF and the lat schemes,

X±(1)
SF,lat = r±0 . (5.6)

We have analysed the series using standard extrapolation techniques [48, 49]. In all cases

we first checked that the coefficients s±0 of the logarithm are indeed given by the universal

one-loop anomalous dimensions. Within the expected numerical precision this is indeed

the case: for instance in scheme s = 5 and for the O(a) improved action we get

s+
0 /γ+

0 = 1.00(1), s−0 /γ−
0 = 0.997(6). (5.7)

Having passed this check we subtracted the logarithmic divergence using the expected

universal values s±0 = γ±
0 . The finite parts r±0 could then be obtained with an accuracy

of 4 significant digits and are given in table 1. The precision is generally better for the

O(a) improved data, owing to the fact that O(a) improvement of the action together with

tree-level improvement of the operators and boundary fields implies the vanishing of the

subleading coefficients s±1 .

As a further check we computed the difference between the results for improved and

unimproved Wilson quarks. These values must coincide with the ones obtained in pertur-

bation theory on the infinite lattice. More precisely, the relation between the renormalized

operators in the lattice minimal subtraction schemes

(O±
VA+AV)lat(sw) = (O±

VA+AV)lat(wilson)X±
sw,wilson, (5.8)
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Scheme γ+
1 /γ+

0 (N = 3) γ−
1 /γ−

0 (N = 3)

SF-1 0.0207(12) + 0.00800(7)Nf −0.4668(6) + 0.03890(4)Nf

SF-2 −0.2394(12) + 0.02377(7)Nf −0.1841(3) + 0.02176(2)Nf

SF-3 0.0669(12) + 0.00520(7)Nf −0.4899(6) + 0.04030(4)Nf

SF-4 −0.3142(12) + 0.02830(7)Nf −0.1093(6) + 0.01723(4)Nf

SF-5 −0.2873(6) + 0.02667(4)Nf −0.1591(3) + 0.02025(2)Nf

SF-6 −0.3087(12) + 0.02797(7)Nf −0.1492(3) + 0.01965(2)Nf

SF-7 0.0207(12) + 0.00800(7)Nf −0.4668(6) + 0.03890(4)Nf

SF-8 −0.3604(6) + 0.03110(4)Nf −0.0860(3) + 0.01581(2)Nf

SF-9 −0.3335(12) + 0.02947(7)Nf −0.1360(6) + 0.01885(4)Nf

DRED 0.093405 − 0.0056290Nf 0.045911 − 0.0014072Nf

NDR −0.011082 + 0.0007036Nf 0.011082 + 0.0007036Nf

HVDR 0.221112 − 0.0133688Nf −0.035357 + 0.0035181Nf

Table 2: The two-loop anomalous dimensions in units of the corresponding universal one-loop

coefficients, in various renormalization schemes.

can be inferred in two ways, leading, at one-loop order, to the equations

X±(1)
sw,wilson = X±(1)

DRED,lat(wilson) −X±(1)
DRED,lat(sw) = X±(1)

SF,lat(wilson) −X±(1)
SF,lat(sw). (5.9)

Numerically, we set N = 3 and obtain from section 4

X+(1)
sw,wilson = −0.089935(4), X−(1)

sw,wilson = −0.004845(3). (5.10)

Indeed, passing via the SF scheme reproduces these numerical values albeit to a lesser

precision.

Finally, using the coefficients in table 1 and combining the results according to eq.

(4.18), we obtain the two-loop anomalous dimensions in the SF schemes. They are collected

in table 2, in units of the universal one-loop anomalous dimensions. We observe a large

spread of numerical values, which already suggests that not all schemes will be well-suited

for practical applications. Concerning the equality of the two-loop anomalous dimensions

for the SF schemes 1 and 7, there is no obvious explanation. In particular we do not see

any reason why the two schemes should be identical and therefore believe that the equality

of the anomalous dimensions to one-loop order is an accident.

6. The step-scaling functions

Beyond perturbation theory, the running of parameters and renormalization constants is

traced by computing the corresponding step-scaling functions. For the multiplicatively

renormalizable operators (2.5) these are denoted by σ±, and defined in the continuum

limit by

σ±
s (u) = lim

a→0
Σ±

s (u, a/L), Σ±
s (u, a/L) =

Z±
VA+AV;s(g0, a/2L)

Z±
VA+AV;s(g0, a/L)

∣

∣

∣

∣

∣

ḡ2(L)=u

. (6.1)
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L/a am
(1)
c (L/a)|csw=1/CF am

(1)
c (L/a)|csw=0/CF

6 −0.20321867995 −0.31794582875

8 −0.20265948108 −0.32108637617

10 −0.20257791198 −0.32267336579

12 −0.20256208759 −0.32357398613

14 −0.20255806667 −0.32412959473

16 −0.20255683599 −0.32449503382

18 −0.20255642494 −0.32474770548

20 −0.20255629201 −0.32492948187

22 −0.20255626132 −0.32506452914

24 −0.20255626893 −0.32516755709

26 −0.20255628989 −0.32524792419

28 −0.20255631414 −0.32531180974

30 −0.20255633768 −0.32536342485

32 −0.20255635903 −0.32540571847

∞ −0.20255651209 −0.32571411742

Table 3: The one-loop coefficients of the critical mass as obtained from the PCAC condition at

finite lattice size. For the parameter choices made here, the convergence to the values at infinite

lattice size is quadratic/cubic in (a/L), for standard/O(a) improved Wilson quarks.

Here again, the renormalized quark mass has been set to zero. Similarly, the step-scaling

function for the running coupling in the SF scheme is defined by

σ(u) = ḡ2(2L), u = ḡ2(L). (6.2)

The connection to the renormalization group functions β, γ± is then given by the two

coupled equations:

σ±(g2) = exp

{

∫

√
σ(g2)

g
dg′

γ±(g′)

β(g′)

}

, − ln 2 =

∫

√
σ(g2)

g
dg′

1

β(g′)
. (6.3)

This implies that the first two coefficients in the perturbative expansion,

σ±
s (u) = 1 + σ±(1)

s u + σ±(2)
s u2 + O(u3), (6.4)

are given in terms of b0 and γ±
0 , γ±

1 as,

σ±(1)
s = γ±

0 ln 2, (6.5)

σ±(2)
s = γ±

1 ln 2 +

[

1

2

(

γ±
0

)2
+ b0γ

±
0

]

(ln 2)2. (6.6)

On the lattice the computation of the step scaling functions σ±
s (u) requires a careful

extrapolation of lattice approximants Σ±
s (u, a/L), obtained for different lattice sizes L/a

at fixed values u. The limit is expected to be reached at a rate proportional to a/L, but
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L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a

δ+
1 −0.36527 −0.23780 −0.15261 −0.10151 −0.07018 −0.05008

δ+
2 0.02422 −0.03333 −0.02885 −0.01913 −0.01167 −0.00653

δ+
3 −0.48030 −0.32171 −0.21396 −0.14771 −0.10604 −0.07863

δ+
4 0.21731 0.09522 0.06117 0.04699 0.03880 0.03320

δ+
5 0.14610 0.05147 0.03183 0.02601 0.02308 0.02099

δ+
6 0.19678 0.09254 0.06316 0.05017 0.04211 0.03631

δ+
8 0.33235 0.17913 0.12252 0.09319 0.07466 0.06176

δ+
9 0.26114 0.13538 0.09317 0.07221 0.05894 0.04955

δ−1 0.76256 0.45542 0.29780 0.20823 0.15308 0.11690

δ−2 0.31555 0.20900 0.14337 0.10275 0.07664 0.05907

δ−3 0.82008 0.49738 0.32847 0.23133 0.17100 0.13118

δ−4 0.12247 0.08045 0.05335 0.03663 0.02617 0.01934

δ−5 0.25119 0.16615 0.11336 0.08071 0.05981 0.04583

δ−6 0.22927 0.14607 0.09736 0.06810 0.04975 0.03765

δ−8 0.06495 0.03850 0.02267 0.01353 0.00824 0.00506

δ−9 0.19367 0.12419 0.08269 0.05761 0.04189 0.03155

Table 4: O(a) improved Wilson quarks: for finite lattice sizes and SF scheme s = 1, . . . , 9, δs is

defined as the relative deviation of the one-loop step scaling functions from its continuum value, cf.

eq.(6.13). We have omitted δ±7 , since the identity holds δ±7 = δ±1 .

L = 6a L = 8a L = 10a L = 12a L = 14a L = 16a

δ+
1 −1.84058 −1.59016 −1.36031 −1.17808 −1.03557 −0.92259

δ+
2 −1.29860 −1.15706 −1.00236 −0.87333 −0.77011 −0.68725

δ+
3 −1.77678 −1.55304 −1.33618 −1.16118 −1.02310 −0.91301

δ+
4 −1.38914 −1.20924 −1.03612 −0.89692 −0.78750 −0.70059

δ+
5 −1.36068 −1.19302 −1.02568 −0.88964 −0.78215 −0.69649

δ+
6 −1.39431 −1.21275 −1.03855 −0.89868 −0.78883 −0.70162

δ+
8 −1.45294 −1.24637 −1.06026 −0.91382 −0.79998 −0.71017

δ+
9 −1.42448 −1.23015 −1.04981 −0.90654 −0.79462 −0.70607

δ−1 1.65366 1.37471 1.16129 1.00085 0.87797 0.78150

δ−2 1.14358 0.96017 0.81540 0.70456 0.61875 0.55094

δ−3 1.62176 1.35614 1.14922 0.99240 0.87173 0.77670

δ−4 1.23412 1.01235 0.84917 0.72814 0.63614 0.56429

δ−5 1.17376 0.97756 0.82666 0.71242 0.62454 0.55539

δ−6 1.19143 0.98801 0.83350 0.71723 0.62811 0.55813

δ−8 1.26602 1.03091 0.86124 0.73659 0.64238 0.56908

δ−9 1.20566 0.99612 0.83873 0.72087 0.63078 0.56018

Table 5: The same as table 4, but for unimproved Wilson quarks. The cutoff effects are very large,

mainly due to the lattice artefacts in the definition of mc on finite lattices (cf. figure 4). We have

omitted δ±7 , since the identity holds δ±7 = δ±1 .
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in practice higher order effects may still be important for the accessible lattice sizes. In

perturbation theory we can now address this question by studying the continuum approach

of the perturbative coefficients,

Σ±
s (u, a/L) = 1 + Σ±

s (a/L)(1) u + Σ±
s (a/L)(2) u2 + O(u3). (6.7)

Our one-loop calculation allows the study of

Σ±
s (a/L)(1) = Z±

s (2L/a)(1) − Z±
s (L/a)(1). (6.8)

This is in principle straightforward, but there is a subtlety related to the determination

of the zero mass point. With Wilson-type quarks, the chiral limit can only be defined

up to cutoff effects. Perturbation theory is special in this respect, as g0 and a can be

varied independently order by order in the expansion so that a critical mass parameter

can be unambiguously defined at each order of perturbation theory (cf. (5.4) for the one-

loop results). However, for the perturbative evaluation of cutoff effects to be useful in the

analysis of the corresponding non-perturbative simulation data, we would like to mimick

exactly the procedure used there. In particular we take over the definition of the zero mass

point: on a lattice of size L/a, with T = L and θ = 0, one determines the bare mass

parameter m0 for which the PCAC mass

m(x0) =
fA(x0 + a) − fA(x0 − a)

4afP(x0)
(6.9)

vanishes at the midpoint x0 = L/2 [4]. In perturbation theory, the condition m(L/2) = 0

then leads to a perturbative series for the critical mass including cutoff effects,

mc(L/a) =

∞
∑

n=0

m(n)
c (L/a)g2n

0 , (6.10)

with the low order results

m(0)
c (L/a) = 0, (6.11)

m(1)
c (L/a) = − 1

4a

(

f
(1)
A (x0 + a) − f

(1)
A (x0 − a)

)

∣

∣

∣

∣

m0=0

. (6.12)

We remark that, in the O(a) improved framework (csw = 1), the SF correlation function

fA(x0) in eq. (6.9) is supposed to include also the O(a) counterterms proportional to cA and

c̃t. However, at one-loop order and with the chosen parameters, these O(a) counterterms

vanish identically. The limiting values of m
(1)
c (L/a) for infinite lattice size L/a are the

usual one-loop coefficients (5.4), which are reached with a rate proportional to (a/L)2 and

(a/L)3 for Wilson and O(a) improved Wilson quarks, respectively. For future reference we

have collected the values of am
(1)
c (L/a) for lattice sizes up to L/a = 32 in table 3.

Having determined the critical quark mass, the cutoff effects in the step-scaling func-

tions can be evaluated in a straightforward way. Defining the relative deviation of the

one-loop coefficients

δ±s (a/L) = Σ±
s (a/L)(1)/σ±(1)

s − 1, (6.13)
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Figure 4: One-loop lattice artefacts δ+
1 and δ−2 in the step-scaling function. The data points are

obtained with the Wilson and SW actions, each for two definitions of the critical mass. The dashed

lines are obtained as 4-parameter fits to the expected asymptotic behaviour and are displayed to

guide the eye.

the results for the various SF schemes and both improved and unimproved Wilson quarks

are given in tables 4 and 5. As can be seen there, cutoff effects in the one-loop coefficient

with O(a) improved Wilson quarks are typically around the 30-50 percent level at L/a = 6,

and decrease to a few percent level at L/a = 16. With unimproved Wilson quarks, however,

the cutoff effects are found to be much larger, typically going from 150 down to 60-80

percent at the largest lattice size. We found that most of this dramatic effect is indeed

due to the usage of mc(L/a) rather than mc(∞). This is illustrated in figure 4, where

the corresponding values for δ+
1 and δ−2 are plotted both for improved and unimproved

Wilson quarks. We conclude that cutoff effects in the step-scaling functions can be quite

large, and the expected asymptotic dominance of linear lattice artefacts is not yet observed

for our data. However, we also note that cutoff effects with the O(a) improved action

are significantly smaller, a fact that is also reflected in the non-perturbative data [50].

Moreover, for the available lattice sizes O(a2) effects seem to dominate. We take this

as an indication that O(a) improvement of the four-quark operators may be numerically

unimportant, at least for the step-scaling functions considered here.

7. Conclusions

We have introduced a family of finite volume renormalization schemes for the two multi-

plicatively renormalizable four-quark operators in eq. (2.5). The schemes are based on the

Schrödinger functional and are defined independently of a particular regularization. By

matching, at one-loop order of perturbation theory, to commonly used continuum schemes

(NDR, HVDR, DRED), we could infer the 2-loop anomalous operator dimensions in these

SF schemes. These results are being used in a corresponding non-perturbative study [50]
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which completely solves the non-perturbative renormalization problem for these operators

in quenched QCD. Based on this work, preliminary results for the kaon bag parameter

BK have been presented in [12]. Besides the two multiplicatively renormalizable operators

studied here, the complete basis of parity-odd four-quark operators contains eight further

operators which form four pairs that mix under renormalization [17]. The study of these

mixing problems both in perturbation theory and beyond is left for future work.
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